8 research outputs found

    Algebraic properties of ordinary differential equations.

    Get PDF
    Thesis (Ph.D.)-University of Natal, 1995.In Chapter One the theoretical basis for infinitesimal transformations is presented with particular emphasis on the central theme of this thesis which is the invariance of ordinary differential equations, and their first integrals, under infinitesimal transformations. The differential operators associated with these infinitesimal transformations constitute an algebra under the operation of taking the Lie Bracket. Some of the major results of Lie's work are recalled. The way to use the generators of symmetries to reduce the order of a differential equation and/or to find its first integrals is explained. The chapter concludes with a summary of the state of the art in the mid-seventies just before the work described here was initiated. Chapter Two describes the growing awareness of the algebraic properties of the paradigms of differential equations. This essentially ad hoc period demonstrated that there was value in studying the Lie method of extended groups for finding first integrals and so solutions of equations and systems of equations. This value was emphasised by the application of the method to a class of nonautonomous anharmonic equations which did not belong to the then pantheon of paradigms. The generalised Emden-Fowler equation provided a route to major development in the area of the theory of the conditions for the linearisation of second order equations. This was in addition to its own interest. The stage was now set to establish broad theoretical results and retreat from the particularism of the seventies. Chapters Three and Four deal with the linearisation theorems for second order equations and the classification of intrinsically nonlinear equations according to their algebras. The rather meagre results for systems of second order equations are recorded. In the fifth chapter the investigation is extended to higher order equations for which there are some major departures away from the pattern established at the second order level and reinforced by the central role played by these equations in a world still dominated by Newton. The classification of third order equations by their algebras is presented, but it must be admitted that the story of higher order equations is still very much incomplete. In the sixth chapter the relationships between first integrals and their algebras is explored for both first order integrals and those of higher orders. Again the peculiar position of second order equations is revealed. In the seventh chapter the generalised Emden-Fowler equation is given a more modern and complete treatment. The final chapter looks at one of the fundamental algebras associated with ordinary differential equations, the three element 8£(2, R), which is found in all higher order equations of maximal symmetry, is a fundamental feature of the Pinney equation which has played so prominent a role in the study of nonautonomous Hamiltonian systems in Physics and is the signature of Ermakov systems and their generalisations

    SIMILARITY SOLUTIONS AND CONSERVATION LAWS FOR THE BEAM EQUATIONS: A COMPLETE STUDY

    Get PDF
    We study the similarity solutions and we determine the conservation laws of various forms of beam equations, such as Euler-Bernoulli, Rayleigh and Timoshenko-Prescott. The travelling-wave reduction leads to solvable fourth-order odes for all the forms. In addition, the reduction based on the scaling symmetry for the Euler-Bernoulli form leads to certain odes for which there exists zero symmetries. Therefore, we conduct the singularity analysis to ascertain the integrability. We study two reduced odes of second and third orders. The reduced second-order ode is a perturbed form of Painlevé-Ince equation, which is integrable and the third-order ode falls into the category of equations studied by Chazy, Bureau and Cosgrove. Moreover, we derived the symmetries and its corresponding reductions and conservation laws for the forced form of the abovementioned beam forms. The Lie Algebra is mentioned explicitly for all the cases

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Canonical transformation of polynomial hamiltonians

    No full text

    Responsiveness and Firm-Led Disease Prevention: Three Cases from the 2014 Ebola Epidemic in Liberia

    No full text

    Price-Fixing Overcharges: Legal and Economic Evidence

    No full text

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    No full text
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    Get PDF
    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function
    corecore